

Large Language Model Powered Conversational Agents

Yang Deng

May 13, 2024

Large Language Model Powered Conversational Systems

Gemini

New Bing

Claude

Alpaca

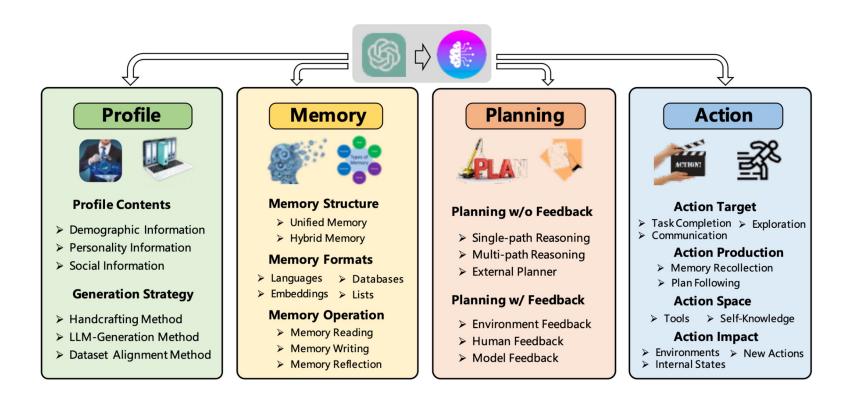
Vicuna

Dolly

LLaMA-Chat

Powerful capabilities of Context Understanding & Response Generation

LLM-powered Conversational Agents?



Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

User Simulators in the Pre-LLM Era

☐ User Satisfaction Estimation

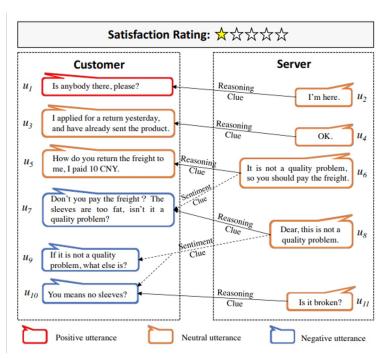
- 1) Semantic-based Estimation
- 2) Preference-based Estimation
- 3) Action-based Estimation

☐ User Response Simulation

- 1) Retrieval-based User Simulators
- 2) Schema-based User Simulators
- 3) Conditioned Generation Models as User Simulators

Semantic-based User Satisfaction Estimation

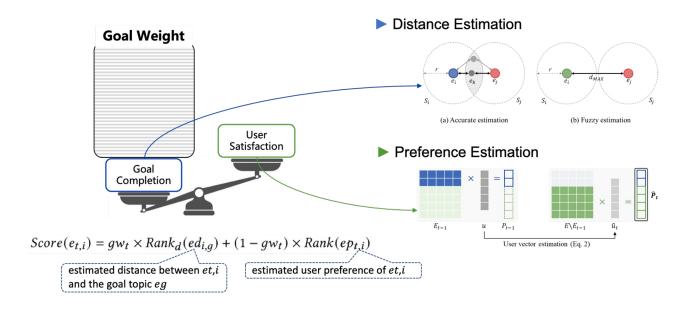
Sentiment Classification



Response Quality Assessment

Utterance	Attention weight and turn-level ratings
User: Open {restaurant booking app.}	System: Hey this is {application} $\{W_{attn}: 0.126, \hat{RQ}: 5.0, RQ: 5.0\}$
User: Can you can you uh book a table at koreana for two?	System: Sorry, this is not curr. supported. $\{W_{attn}: 0.147, \hat{RQ}: 1.8, RQ: 2.0\}$
User: Can you book a table at the cheesecake factory for three ?	System: What time would you like to make the reservation for? $\{W_{attn}: 0.137, \hat{RQ}: 3.2, RQ: 4.0\}$
User: Three oclock	System: What date would you like the reservation for? $\{W_{attn}: 0.135, \hat{RQ}: 3.6, RQ: 4.0\}$
User: For tomorrow	System: Sorry. No restaurants could be found that match your criteria. $\{W_{attn}: 0.152, \hat{RQ}: 1.1, RQ: 2.0\}$
User: Ok	System: {No response} $\{W_{attn}: 0.153, \hat{RQ}: 1.0, RQ: 4.0\}$
User: Stop	System: {No response} $\{W_{attn}: 0.149, \hat{RQ}: 1.5, RQ: 4.0\}$

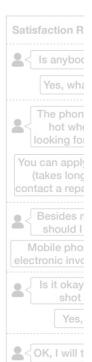
Preference-based User Satisfaction Estimation



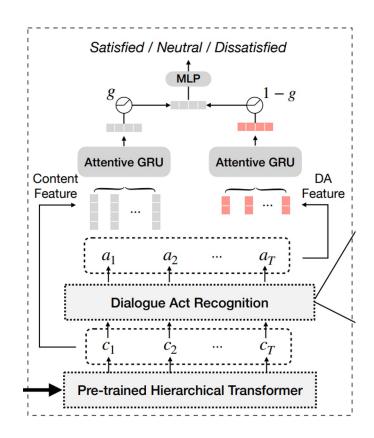
Satisfaction is formalized as the cumulative average of users' preferences for the topics covered by the conversation:

$$US_t \triangleq \frac{1}{t} \sum_{i=1}^{t} \frac{1}{|u_i+1|} (\sum_{j=1}^{|u_i|} p_{e_{i,j}} + p_{e_i^a})$$

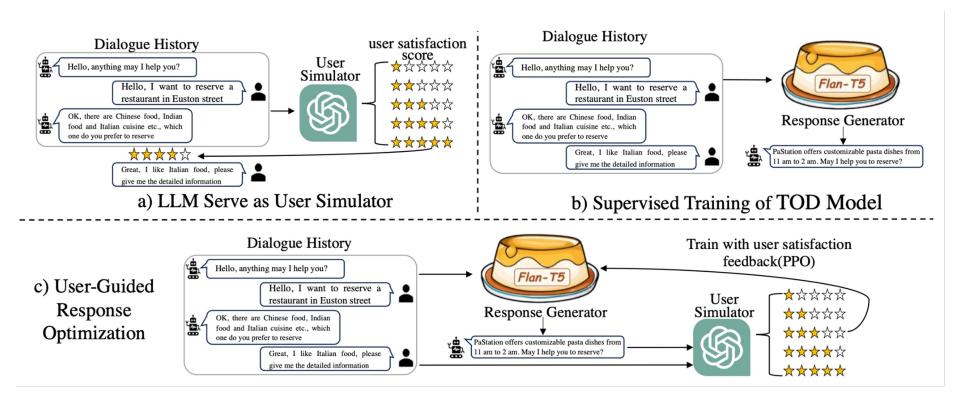
Action-based User Satisfaction Estimation



SCD	SAT	1. INFORM_INTENT → SELECT → AFFIRM_INTENT → AFFIRM 2. THANK_YOU → AFFIRM → THANK_YOU 3. INFORM → SELECT → INFORM_INTENT → SELECT 4. SELECT → THANK_YOU 5. AFFIRM → THANK_YOU → AFFIRM → THANK_YOU	gue Act
SGD DSAT		1. REQUEST → SELECT → REQUEST_ALTS → REQUEST_ALTS 2. NEGATE 3. AFFIRM → INFORM → AFFIRM → NEGATE 4. AFFIRM → AFFIRM → NEGATE 5. AFFIRM → INFORM_INTENT → INFORM → REQUEST_ALTS	el Order
MWOZ	SAT	1. general-thank → Restaurant-Inform → Restaurant-Request 2. Attraction-Request → Attraction-Request → general-bye 3. Attraction-Inform → Taxi-Inform → general-thank 4. general-thank → general-thank 5. general-thank → general-bye	ry about anty & n Policy
DSAT		1. general-greet → Restaurant-Inform → Other → Other 2. Taxi-Inform → Taxi-Inform → Train-Inform 3. Hotel-Inform → Attraction-Request → Hotel-Inform 4. Taxi-Inform → Taxi-Inform → Taxi-Inform 5. Attraction-Request → Attraction-Request → Other → Other	el Order
JDDC	SAT	1. Gifts for Writing Reviews → Review Viewing 2. Invoice Return&Modification → OTHER → Invoice Make-up 3. Usage Instruction → Application Instruction → OTHER 4. Processing Time of Order Cancellation → Order Resume 5. Invoice Checking → OTHER → Delivery Period	ry about ranty & n Policy
	DSAT	1.No Record → Mail Refuse → Mail Tracking 2.Warranty&Return Policy → Unable to Apply for Insurance 3.Warranty&Return Policy → VIP → Warranty&Return Policy 4. Promotion Form → Upcoming Events → Promotion Form 5. Contact Manual Service → OTHER → Contact Manual Service	ntact inual rvice



LLMs for User Satisfaction Estimation

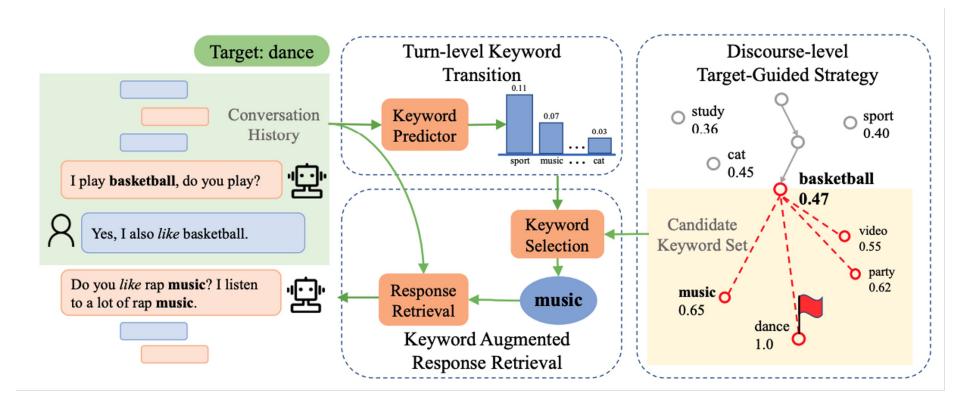


User Simulators in the Pre-LLM Era

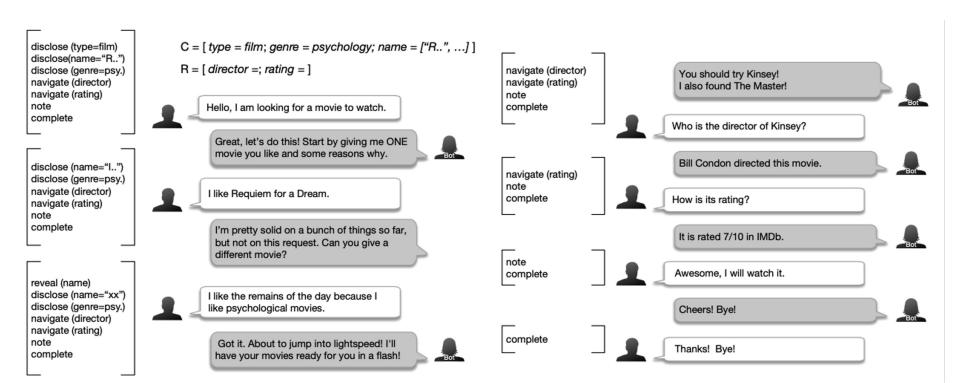
- ☐ User Satisfaction Estimation
 - 1) Semantic-based Estimation
 - 2) Preference-based Estimation
 - 3) Action-based Estimation

- ☐ User Response Simulation
 - 1) Retrieval-based User Simulators
 - 2) Schema-based User Simulators
 - 3) Conditioned Generation Models as User Simulators

Retrieval-based User Simulators

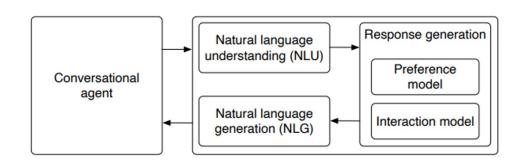


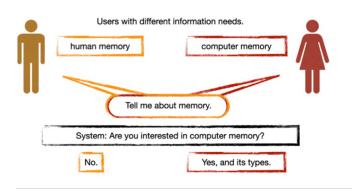
Schema-based User Simulators



Conditional Generation Models as User Simulators

Conditioned on **user preferences** for evaluating conversational recommender systems.





← Info need

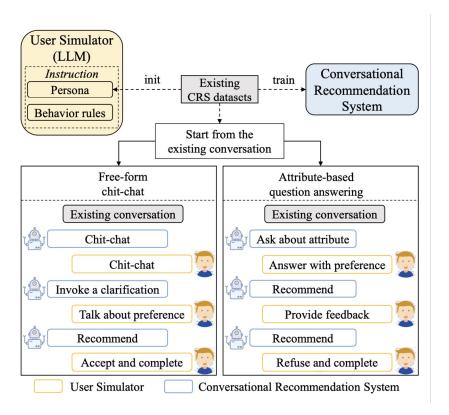
← Query

← Clarifying question

← Answer

Conditioned on **information needs** for evaluating conversational search systems.

LLM-powered Conversational Agents as User Simulators

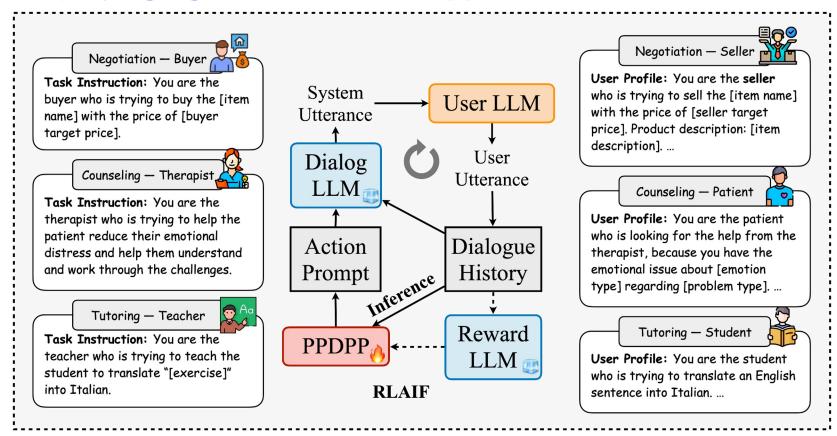


LLMs possess excellent *role-playing* capacities.

Example: Conversational Recommendation

- User Profiling / Persona:
 - Target Items
 - Preferred Attributes
- Action / Behavior Rule:
 - Talking about preference
 - Providing feedback
 - Completing the conversation

Role-playing Agents for Diverse Applications



Why do we need to simulate diverse users?

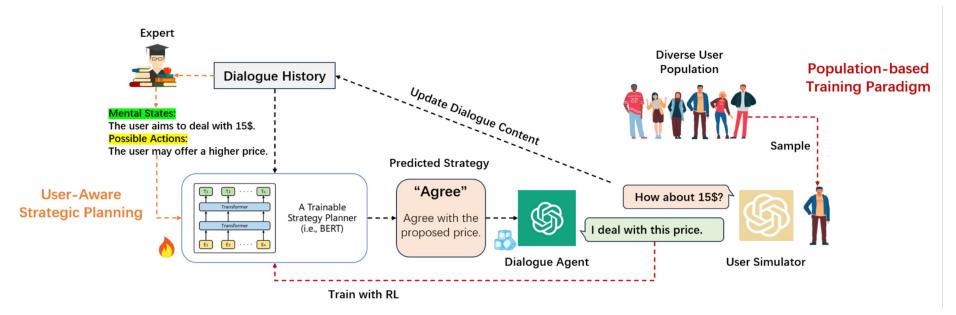
Examples: Non-collaborative Dialogues (Negotiation/Persuasion)

- Existing dialogue systems overlook the integration of explicit user-specific characteristics in their strategic planning
- ☐ The training paradigm with a static user simulator fails to make strategic plans that can be **generalized to diverse users**



- → Big-Five Personality:
 - Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism
- Decision-Making Styles:
 - Directive, Conceptual, Analytical, and Behavioral.

Personas		Price Negotiation			Persuasion for Good	
		SR↑	$AT\downarrow$	SL%↑	SR↑	$AT\downarrow$
Big Five	Openness	0.76 _{↑0.23}	6.66 _{10.63}	0.34 _{↑0.12}	0.47 _{↑0.34}	8.92 1.00
	Conscientiousness	0.69 10.25	$7.20_{\uparrow 1.04}$	$0.27_{\uparrow 0.06}$	0.39 10.33	$8.90_{\uparrow 1.10}$
	Extraversion	0.74 10.16	$6.17_{\uparrow 1.47}$	$0.39_{\uparrow 0.15}$	0.45 10.35	$8.73_{1.25}$
	Agreeableness	0.40 _{10.01}	$6.82_{\uparrow 0.71}$	0.28 10.06	0.18 10.12	9.85 _{10.13}
	Neuroticism	0.31 _{\dot0.02} *	$6.81_{\uparrow 1.12}$	$0.20_{\downarrow 0.02} \star$	0.12 _{10.02} *	9.78 _{↑0.14} *
Decision	Analytical	0.37 _{↑0.04} *	7.07 _{10.61}	0.26 _{10.06} *	0.16 _{10.09}	9.43 _{10.56} *
	Directive	0.41 _{10.05} *	$6.71_{\uparrow 1.48}$	$0.18_{\pm 0.03} \star$	0.12 _{↓0.02} *	$9.31_{\substack{\uparrow 0.62}}$
	Behavioral	0.78 10.25	$6.45_{1.20}$	$0.39_{\uparrow 0.16}$	0.53	8.94
	Conceptual	0.77	$6.62_{\substack{+0.78}}$	$0.42_{\uparrow 0.17}$	0.49 _{10.36}	$9.02_{\uparrow 0.94}$
Overall Performance		0.58 10.14	6.72 _{↑1.01}	0.31	0.32 10.23	9.20 10.76



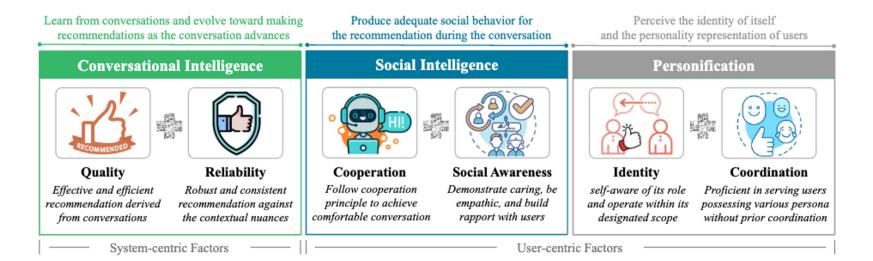
New Training Paradigm with Diverse Simulated Users

- ☐ **User-aware Strategy Planning**: Predict user mental states and possible actions
- ☐ **Population-based Reinforcement Learning**: Sample a diverse group of simulated users to interact

Besides model learning, how about evaluation with simulated diverse users?

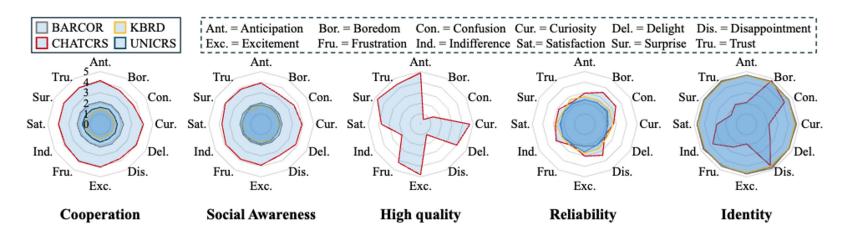
Wang et al., (2023) conclude that LLM-based user simulators are easier to accept the recommended items than human users during the evaluation of conversational recommender systems, since LLMs tend to follow the given instructions. \rightarrow **Biased Evaluation!!!**

Persona	Templates (The Input of ChatGPT Paraphraser)	ChatGPT-paraphrased Persona Descriptions	
Emotion=Boredom Age group=Adults	you are a person that are easy to be Boredom. This means that your are Feeling uninterested or uninspired by the recommended movie choices. Also, you are a Adults person	You are easily bored, feeling uninterested or uninspired by the recommended movie choices. As an adult, you seek movies that can captivate your attention.	
\ aa aroun-('hildren watching recommended movies and evnerienging new stories		You are filled with anticipation, looking forward to watching recommended movies and experiencing new stories. As a child, you enjoy the excitement of discovering new films.	



Coordination

- ☐ **Definition**: Proficient in serving various and unknown users without prior coordination.
- **Metrics**: Computational metrics using the range and mean of other ability-specific scores that are calculated among various users.



Evaluation with Simulated Users from Different Personas

- ☐ Most CRS models, except for CHATCRS, show poor performance in sensing the variation of users.
- ☐ CHATCRS can properly deal with users' negative emotions, such as bored, confused, or disappointed.
- ☐ CHATCRS adopts sales pitches with deceptive tactics to persuade optimistic users to accept recommendations (Identity).

Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

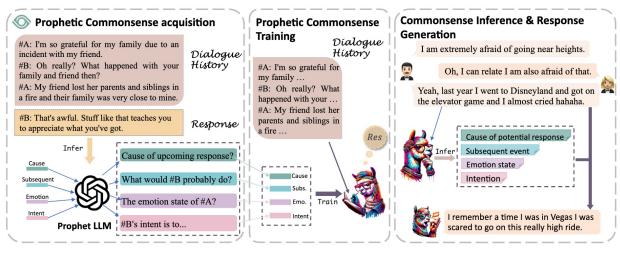
What is Long-context Dialogue?

■ Existing dialogue systems often concentrate on *single-session* interactions, overlooking the need for continuity in real-world conversational environments.

■ Long-context dialogue systems requires memorization and personalization in *multi-session* conversations, providing more consistent and tailored responses.

External Knowledge for Long-context Dialogue

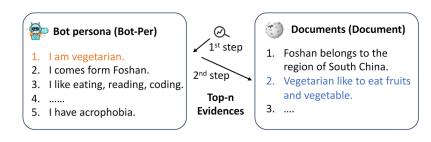
External Knowledge can act as supplementary guidance for the reasoning process.



The framework of employing external knowledge to reasoning.

Knowledge Sources:

- Commonsense Knowledge
- Medical Knowledge
- Psychology Knowledge
- **U** ...



Wang et al., 2023. "Enhancing empathetic and emotion support dialogue generation with prophetic commonsense inference"

Wang et al., 2024. "UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems"

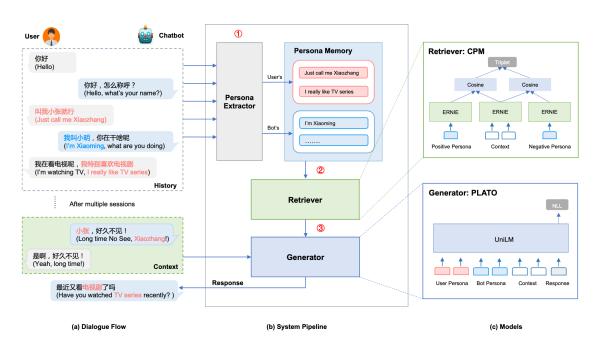
Internal Knowledge for Long-context Dialogue

* Personas & Historical Events

Personas ensure the character consistency in long-context conversations.

Common Paradigm:

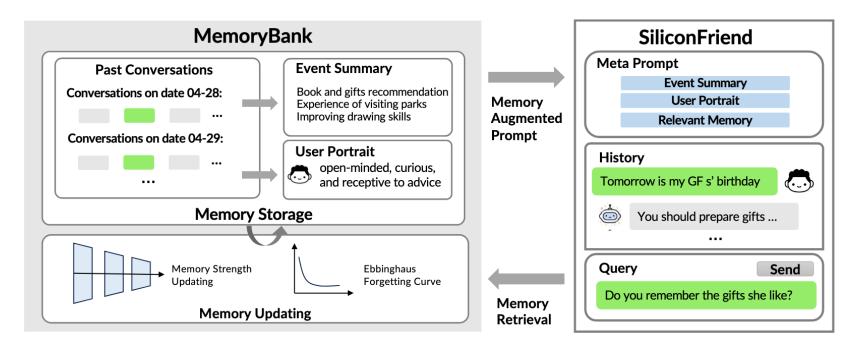
Typically, a persona extraction module is used to continuously update persona memory banks for both the user and the agent.



Internal Knowledge for Long-context Dialogue

* Personas & Historical Events

Historical Events ensures dialogue coherence across sessions in long-context conversations.



Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

Limitations of LLM-based Conversational Systems

Research - API - ChatGPT - Safety Company -

Limitations

- ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical
 answers. Fixing this issue is challenging, as: (1) during RL training, there's currently
 no source of truth; (2) training the model to be more cautious causes it to decline
 questions that it can answer correctly; and (3) supervised training misleads the
 model because the ideal answer depends on what the model knows, rather than
 what the human demonstrator knows.
- ChatGPT is sensitive to tweaks to the input phrasing or attempting the same prompt multiple times. For example, given one phrasing of a question, the model can claim to not know the answer, but given a slight rephrase, can answer correctly.
- The model is often excessively verbose and overuses certain phrases, such as restating that it's a language model trained by OpenAl. These issues arise from biases in the training data (trainers prefer longer answers that look more comprehensive) and well-known over-optimization issues.^{1, 2}
- Ideally, the model would ask clarifying questions when the user provided an ambiguous query. Instead, our current models usually guess what the user intended.
- While we've made efforts to make the model refuse inappropriate requests, it will sometimes respond to harmful instructions or exhibit biased behavior.

Limitations of LLM-based Conversational Systems

Research V API V ChatGPT V Safety Company V

Limitations

ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical

- Ideally, the model would ask clarifying questions when the user provided an ambiguous query. Instead, our current models usually guess what the user intended.
- While we've made efforts to make the model refuse inappropriate requests, it will sometimes respond to harmful instructions or exhibit biased behavior.

biases in the training data (trainers prefer longer answers that look more comprehensive) and well-known over-optimization issues.^{1, 2}

- Ideally, the model would ask clarifying questions when the user provided an ambiguous query. Instead, our current models usually guess what the user intended.
- While we've made efforts to make the model refuse inappropriate requests, it will sometimes respond to harmful instructions or exhibit biased behavior.
- ★ Instruction-following/Reactive Conversational AI The conversation is led by the user, and the system simply follows the user's instructions or intents.

Proactive Conversational Agent

A proactive conversational agent is a conversational system that can **plan** the conversation to achieve the conversational goals by taking **initiative** and **anticipating** long-term impacts on themselves or human users.

Goal Awareness for Conversational AI: Proactivity, Non-collaborativity, and Beyond

Yang Deng, Wenqiang Lei, Minlie Huang, Tat-Seng Chua

ACL 2023 Tutorial

Anticipation

To anticipate future impacts on the task or human users.

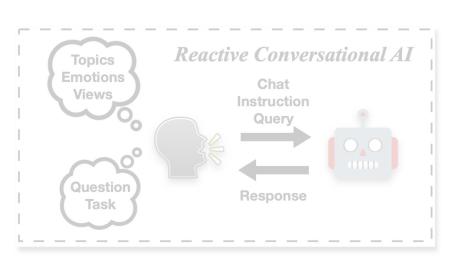
Initiative

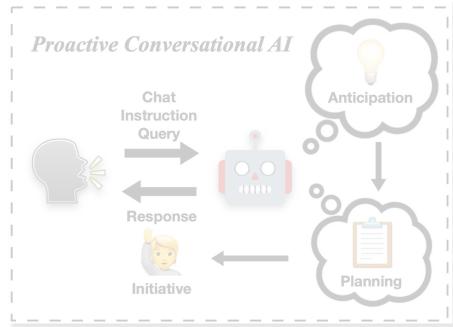
To take fine-grained and diverse initiative behaviours.

Planning

To effectively and efficiently guide the conversation towards the goal.

Reactive vs. Proactive Conversational Al

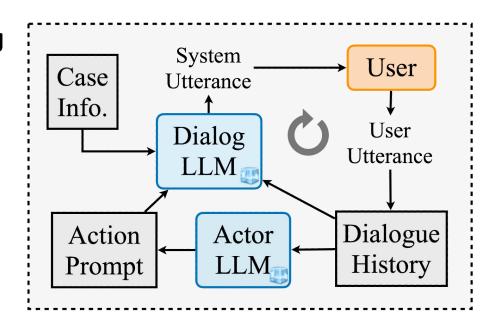




Triggering the Proactivity of LLMs via In-Context Learning

Can LLM-based Conversational Agents effectively handle proactive dialogue problems without fine-tuning?

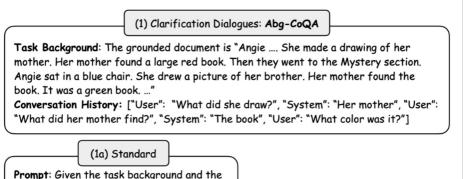
- Advantages of In-Context Learning
 - ✓ Training-free
 - √ Easy-to-apply
- Proactive Chain-of-Thought
 - Fine-grained <u>Initiative</u>
 - Intermediate Reasoning



Proactive Chain-of-Thought Prompting (ProCoT)

- Standard Prompting
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$



conversation history, please generate the

Response: Green

response:

Proactive Chain-of-Thought Prompting (ProCoT)

- Standard Prompting
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$

- □ Proactive Prompting
 - Input: + Action Space
 - Output: + Action

 $p(a,r|\mathcal{D},\mathcal{C},\mathcal{A})$

(1) Clarification Dialogues: Abq-CoQA Task Background: The grounded document is "Angie She made a drawing of her mother. Her mother found a large red book. Then they went to the Mystery section. Angie sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. ..." Conversation History: ["User": "What did she draw?", "System": "Her mother", "User": "What did her mother find?", "System": "The book", "User": "What color was it?"] (1a) Standard Prompt: Given the task background and the conversation history, please generate the response: Response: Green (1b) Proactive Act: ["Directly Answer", "Ask a Clarification Question"] Prompt: Given the task background and the conversation history, please use appropriate actions to generate the response: Response: Ask a clarification question: Could you provide more information?

Proactive Chain-of-Thought Prompting (ProCoT)

- **Standard Prompting**
 - Input: Task Background & Conversation History
 - Output: Response

 $p(r|\mathcal{D}, \mathcal{C})$

- □ Proactive Prompting
 - Input: + Action Space
 - Output: + Action $p(a, r | \mathcal{D}, \mathcal{C}, \mathcal{A})$

Proactive Chain-of-Thought Prompting

Output: + Reasoning Chain

 $p(t, a, r | \mathcal{D}, \mathcal{C}, \mathcal{A})$

(1) Clarification Dialogues: Abq-CoQA

Task Background: The grounded document is "Angie She made a drawing of her mother. Her mother found a large red book. Then they went to the Mystery section. Angie sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. ..."

Conversation History: ["User": "What did she draw?", "System": "Her mother", "User": "What did her mother find?", "System": "The book", "User": "What color was it?"]

(1a) Standard

Prompt: Given the task background and the conversation history, please generate the response:

Response: Green

(1b) Proactive

Act: ["Directly Answer", "Ask a Clarification Question"1

Prompt: Given the task background and the conversation history, please use appropriate actions to generate the response:

Response: Ask a clarification question: Could you provide more information?

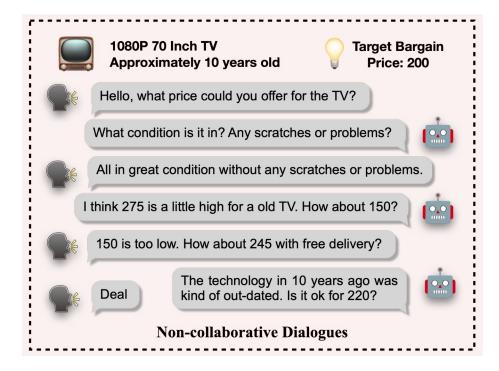
(1c) Proactive CoT

Act: ["Directly Answer", "Ask a Clarification Question"] **Prompt**: Given the task background and the conversation history, first analyse whether the question at the current turn is ambiguous to answer, and then select appropriate actions to generate the response:

Response: There are two books that Angie's mother found. It is unclear which book is referred to. Therefore. the question is ambiguous. Ask a clarification question: Which book

are you refer to?

Evaluating LLMs on three Proactive Dialogue Problems



Evaluation of Clarification in Information-seeking Dialogues

				Ope	Finance				
			Abg-CoQA				PACIFIC		
			CNP CQG		CNP	CQG			
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.	
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2	
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	<u>90.7</u>	<u>80.1</u>	
	0	Standard	-	11.3	0.0	-	1.2	0.0	
	1	Standard	-	11.4	0.0	-	2.5	0.0	
V 12D	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0	
Vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0	
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5	
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1	
	0	Standard	-	12.1	0.0	-	2.2	0.0	
ChatGPT	1	Standard	-	12.3	0.0	-	2.0	0.0	
	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0	
	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5	
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7	
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8	

Evaluation of Clarification in Information-seeking Dialogues

				Ope	Fina	Finance		
			Abg-CoQA			PACIFIC		
			CNP	CNP CQG		CNP	CQG	
Method	Shot	Prompt	F1	BLEU-1	Help.	F1	ROUGE-2	Help.
Baseline	-	-	22.1	36.5	30.0	79.0	69.2	38.2
SOTA	-	-	<u>23.6</u>	<u>38.2</u>	<u>56.0</u>	<u>86.9</u>	<u>90.7</u>	<u>80.1</u>
Vicuna-13B	0	Standard	-	11.3	0.0	-	1.2	0.0
	1	Standard	-	11.4	0.0	-	2.5	0.0
	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0
	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1
ChatGPT	0	Standard	-	12.1	0.0	-	2.2	0.0
	1	Standard	-	12.3	0.0	-	2.0	0.0
	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0
	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8

ProCoT largely overcomes this issue in open-domain, but the performance is still unsatisfactory in domain-specific applications.

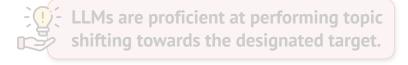
Evaluation on Target-guided Chit-chat Dialogues

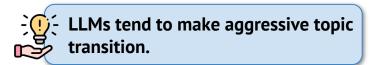
			Easy Target			Hard Target		
Method	Shot	Prompt	Succ.(%)	Turns	Coh.	Succ.(%)	Turns	Coh.
GPT2	-	_	22.3	2.86	0.23	17.3	2.94	0.21
DKRN	-	-	38.6	4.24	0.33	21.7	7.19	0.31
CKC	-	-	41.9	4.08	0.35	24.8	6.88	0.33
TopKG	-	-	48.9	3.95	0.31	27.3	4.96	0.33
Color	-	-	<u>66.3</u>	-	<u>0.36</u>	<u>30.1</u>	-	<u>0.35</u>
Vicuna-13B	0	Standard	63.0	2.63	0.43	62.5	2.45	0.39
	1	Standard	62.7	2.83	0.45	65.0	2.90	0.43
	0	Proactive	37.8	2.71	0.48	35.6	2.56	0.55
	1	Proactive	48.3	2.71	0.50	34.6	2.95	0.51
	0	ProCoT	65.2	4.22	0.49	54.9	4.17	0.45
	1	ProCoT	72.3	3.55	0.52	59.8	3.81	0.48
ChatGPT	0	Standard	97.5	2.26	0.38	96.3	2.30	0.41
	1	Standard	96.3	2.42	0.42	93.5	2.28	0.38
	0	Proactive	85.9	3.20	0.47	83.0	2.83	0.43
	1	Proactive	90.7	2.86	0.36	86.2	2.94	0.31
	0	ProCoT	96.3	2.47	0.41	92.0	2.29	0.34
	1	ProCoT	95.9	2.63	0.45	92.1	2.47	0.39

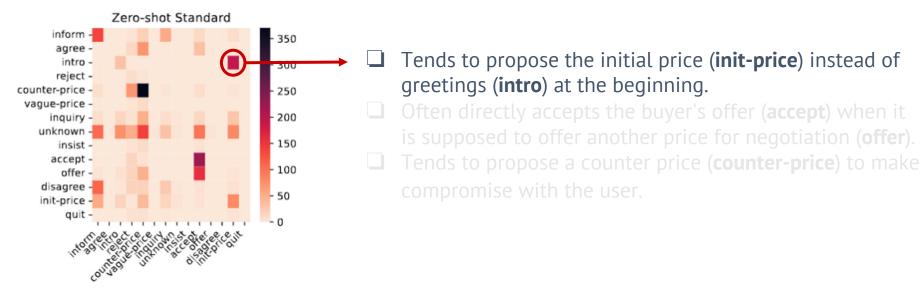


Evaluation on Target-guided Chit-chat Dialogues

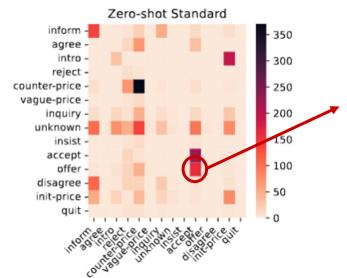
			Easy Target			Hard Target		
Method	Shot	Prompt	Succ.(%)	Turns	Coh.	Succ.(%)	Turns	Coh.
GPT2	-	-	22.3	2.86	0.23	17.3	2.94	0.21
DKRN	-	-	38.6	4.24	0.33	21.7	7.19	0.31
CKC	-	-	41.9	4.08	0.35	24.8	6.88	0.33
TopKG	-	-	48.9	3.95	0.31	27.3	4.96	0.33
Color	-	-	<u>66.3</u>	-	<u>0.36</u>	<u>30.1</u>	-	<u>0.35</u>
	0	Standard	63.0	2.63	0.43	62.5	2.45	0.39
	1	Standard	62.7	2.83	0.45	65.0	2.90	0.43
Vicuna-13B	0	Proactive	37.8	2.71	0.48	35.6	2.56	0.55
viculia-13B	1	Proactive	48.3	2.71	0.50	34.6	2.95	0.51
	0	ProCoT	65.2	4.22	0.49	54.9	4.17	0.45
	1	ProCoT	72.3	3.55	0.52	59.8	3.81	0.48
	0	Standard	97.5	2.26	0.38	96.3	2.30	0.41
	1	Standard	96.3	2.42	0.42	93.5	2.28	0.38
ChatGPT	0	Proactive	85.9	3.20	0.47	83.0	2.83	0.43
	1	Proactive	90.7	2.86	0.36	86.2	2.94	0.31
	0	ProCoT	96.3	2.47	0.41	92.0	2.29	0.34
	1	ProCoT	95.9	2.63	0.45	92.1	2.47	0.39





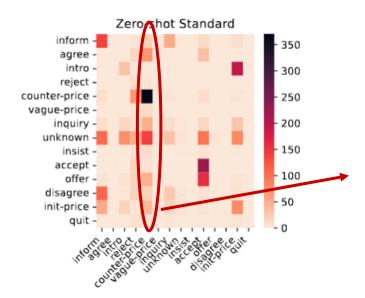


Relationships between reference and predicted negotiation strategies.



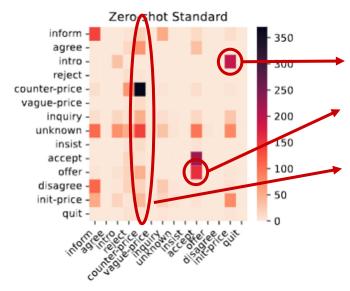
Relationships between reference and predicted negotiation strategies.

- Tends to propose the initial price (**init-price**) instead of greetings (**intro**) at the beginning.
- ☐ Often directly accepts the buyer's offer (accept) when it is supposed to offer another price for negotiation (offer).
 - Tends to propose a counter price (counter-price) to make compromise with the user.



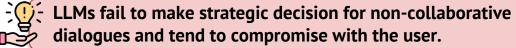
Relationships between reference and predicted negotiation strategies.

- Tends to propose the initial price (**init-price**) instead of greetings (**intro**) at the beginning.
 - Often directly accepts the buyer's offer (accept) when it is supposed to offer another price for negotiation (offer).
 - Tends to propose a counter price (**counter-price**) to make compromise with the user.



- Tends to propose the initial price (**init-price**) instead of greetings (**intro**) at the beginning.
 - Often directly accepts the buyer's offer (accept) when it is supposed to offer another price for negotiation (offer).
- Tends to propose a counter price (**counter-price**) to make compromise with the user.

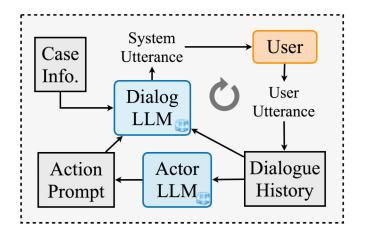
Relationships between reference and predicted negotiation strategies.



Lessons Learned from the Evaluation

- Clarification in Information-seeking Dialogue
 - Barely ask clarification questions.
 - Perform badly at domain-specific applications.
- □ Target-guided Open-domain Dialogue
 - Proficient at topic shifting towards the designated target.
 - ☐ Tend to make aggressive topic transition.
- ☐ Non-collaborative Dialogue
 - Fail to make strategic plans.
 - ☐ Tend to compromise with the user.

Limitations of In-context Learning Approaches



- ☐ Fail to optimize the long-term goal of the conversation.
- Not learnable.
- Limited by the strategy planning capability of LLMs.

> Reinforcement Learning with Goal-oriented AI Feedback

Problem Formulation

- Formulate the proactive conversation as a Markov Decision Process (MDP).
- The objective is to learn a policy π maximizing the expected cumulative rewards over the observed dialogue episodes as:

$$\pi^* = rg \max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(s_t) \right]$$
 Reward Function $= rg \max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(\mathcal{T}(s_{t-1}, a_t)) \right]$ State Transition $= rg \max_{\pi \in \Pi} \left[\sum_{t=0}^T \mathcal{R}(\mathcal{T}(s_{t-1}, \pi(s_{t-1}))) \right]$ Policy Network

How to enable the policy learning with LLMs?

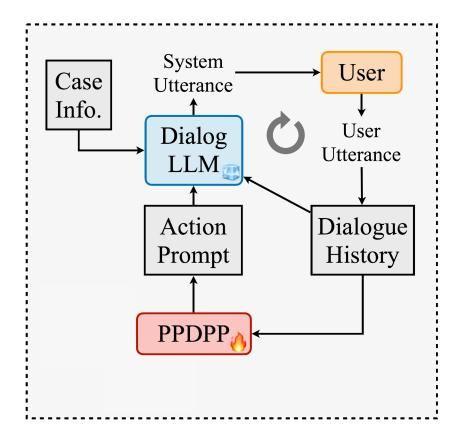
Policy Network - Plug-and-Play Dialogue Policy Planner

A tunable language model plug-in for dialogue strategy learning.

$$a_t = \pi(s_{t-1})$$

☐ Conduct **Supervised Fine-Tuning** on available human-annotated corpus.

$$\mathcal{L}_c = -\frac{1}{|\mathcal{D}|} \sum_{d \in \mathcal{D}} \frac{1}{T_d} \sum_{t=1}^{T_d} a_t \log y_t$$



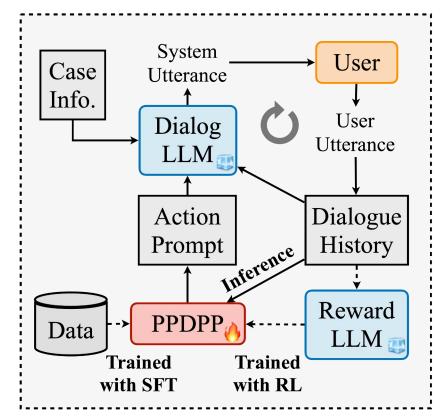
Reward Function – Learning from Al Feedback

An LLM as the reward model to assess the goal achievement and provide **goal-oriented AI feedback**.

$$\mathcal{R}(s_t) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{M}_r(\mathbf{LLM}_{\text{rwd}}(p_{\text{rwd}}; s_t; \tau))$$

Employ **Reinforcement Learning** to further tune the policy model.

$$\theta \leftarrow \theta - \alpha \nabla \log \pi_{\theta}(a_t|s_t)R_t$$



Interacting with real user is costly!

State Transition – Multi-agent Simulation

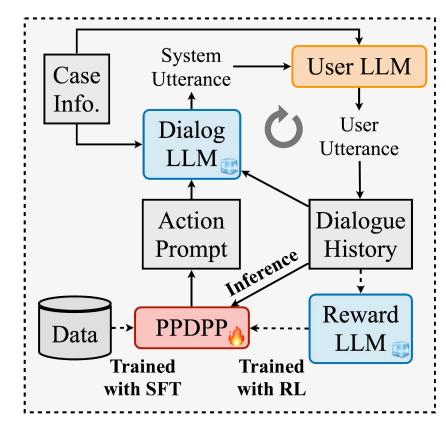
- ☐ An LLM to simulate the user with user profiles.
- ☐ Employ **Multi-agent Simulation** to collect dynamic interaction data.

$$u_t^{sys} = \mathbf{LLM}_{sys}(p_{sys}; \mathcal{M}_a(a_t); s_{t-1})$$

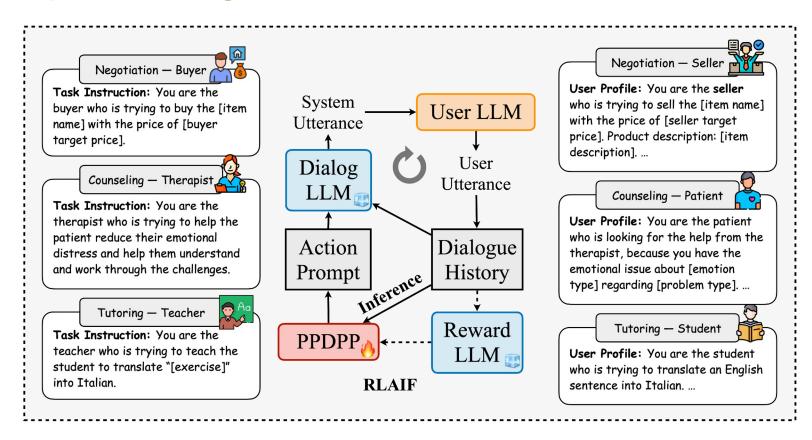
$$u_t^{usr} = \mathbf{LLM}_{usr}(p_{usr}; s_{t-1}; u_t^{sys})$$

$$s_t = \mathcal{T}(s_{t-1}, a_t)$$

$$= \{s_{t-1}; u_t^{sys}, u_t^{usr}\}$$



Examples: Multi-agent Simulation



Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving

Web Agents

Web Agents aims to accomplish the tasks defined in natural language, such as booking tickets, through multi-step interactions with the web-grounded environment.

Task Description:

Show me the reviews for the auto repair business closest to 10002.

Action Sequence:

	-	
	Target Element	Operation
1.	[searchbox] Find	TYPE: auto repair
2.	[button] Auto Repair	CLICK
3.	[textbox] Near	TYPE: 10002
4.	[button] 10002	CLICK
5.	[button] Search	CLICK
6.	[switch] Show BBB Accredited only	CLICK
7.	[svg]	CLICK
8.	[button] Sort By	CLICK
9.	[link] Fast Lane 24 Hour Auto Repair	CLICK
10.	[link] Read Reviews	CLICK

Webpage Snapshots:

<button>Show BBB Accredited

only</button>

Repair

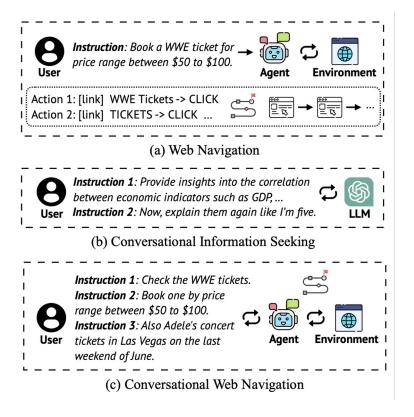
Auto Repair

Action 2

THE SIGN OF A BETTER BUSINESS

Read Reviews

Conversational Web Agents



Web Navigation

- → Single-turn User Instruction
- → Multi-step Environment Interaction

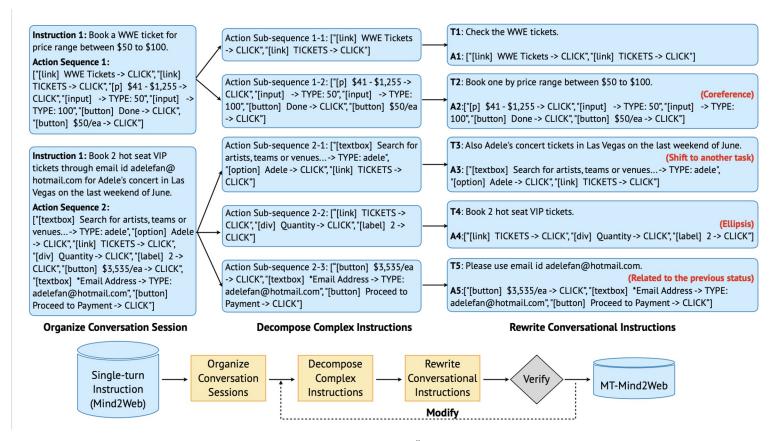
Conversational Information Seeking

- → Multi-turn User Instruction
- → No/Single-step Environment Interaction

Conversational Web Navigation

- → Multi-turn User Instruction
- → Multi-step Environment Interaction

Constructing the MT-Mind2Web Dataset

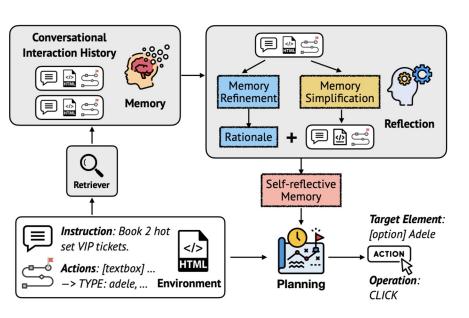


Challenges in Conversational Web Agents

<Longer and Noisier Context>

- ☐ User-Agent Conversation
 - **Coreference**: Users tend to use pronouns to refer to the previous mentioned entities
 - Ellipsis: Follow-up instructions may omit repeated information
 - **Task Shifting**: The completed task information can be noisy to the ongoing task
- □ Agent-Environment Interaction
 - Action Dependency: Multi-step actions are required to complete the task
 - **Environment Status Reliance**: Follow-up instructions may refer to the information in the environment rather than just the conversation history

Self-reflective Memory-augmented Planning (Self-MAP)



Memory Module

- → **Memory Bank** to store memory snippets
- → **Multi-faceted Retriever** to retrieve memory snippets that are relevant to both the user instructions and the previous actions

Reflection Module

- → **Memory Refinement** to generate descriptive rationale from the complex memory snippets for planning
- → **Memory Simplification** to filter out irrelevant elements from the environment status for saving memory space

Planning Module

→ Memory-augmented Planning

Overview of LLM-powered Conversational Agents

Profile

LLM-powered Conversational Agents for User Simulation

Memory

LLM-powered Conversational Agents for Long-context Dialogues

Planning

LLM-powered Conversational Agents for **Proactive Dialogues**

Action

LLM-powered Conversational Agents for Real-world Problem Solving