

Large Language Model Powered **Agents for Information Retrieval**

Tutorial at SIGIR 2024 in Washington D.C.

An Zhang¹, Yang Deng², Yankai Lin³, Xu Chen³, Ji-Rong Wen³, Tat-Seng Chua¹

¹NExT++ Research Centre, National University of Singapore ²School of Computing and Information Systems, Singapore Management University ³ Gaoling School of Artificial Intelligence, Renmin University of China

an_zhang@nus.edu.sg, dengyang17dydy@gmail.com, yankailin@ruc.edu.cn xu.chen@ruc.edu.cn, jrwen@ruc.edu.cn, chuats@comp.nus.edu.sg

Speakers

Personal Information

Zhang An 张岸

- Education Background
- 2021 present: Post-Doc, NUS, School of Computing, NExT++ Research Centre
- 2016 2021: Ph.D, NUS, Department of Statistics and Data Science
- 2012 2016: **B.S.**, Southeast University, School of Mathematics
- Research Interests: LLM-empowered Agents, Robust and Trustable AI, Recommender System
- ➤ Homepage: https://anzhang314.github.io/
- Email: an_zhang@nus.edu.sg

Homepage

Outline

- Part 1: Introduction of LLM-powered Agents
- Part 2: LLM-powered Agents with Tool Learning
- Part 3: LLM-powered Agents in Social Network
- Part 4: LLM-powered Agents in Recommendation
- Part 5: LLM-powered Conversational Agents
- Part 6: Open Challenges and Beyond

NEXT ++ Significant Gap Between LLMs and Recommender Systems (RecSys)

> Significant gap between large language models (LLMs) and recommender systems (RecSys).

How to bridge this gap?

	LLMs	RecSys		
Scope	Language modelling	User behaviour modelling		
Data	Rich world text-based sources	Sparse user-item interactions		
Tokens	A chunk of text (Ten thousand level)	Items (Billion level)		
Characteristics	General model;	Leveraging collaborative signals;		
	Open-world knowledge;	Lack of cross-domain adaptability;		
	High complexity and long	Struggle with cold-start problem;		
	inference time;	Limited intention understanding;		

Next Significant Gap Between LLMs and Recommender Systems (RecSys)

Significant gap between large language models (LLMs) and recommender systems (RecSys).

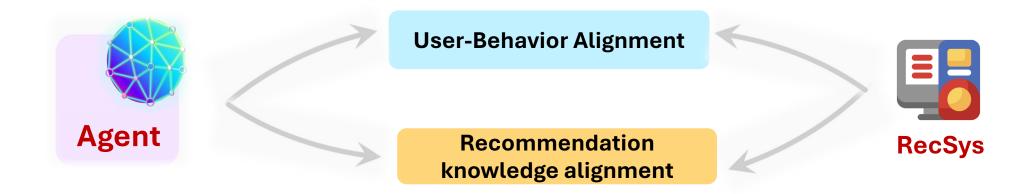
How to bridge this gap?

- Align recommendation space with language space.
 - User behavior alignment oning Action
 - Recommendation knowledge alignment and Schedule

Plan

- Two critical components in RecSys:
 - Understanding user's behavior/preference
 - Acquiring recommendation-specific **knowledge**

LLM-powered Agents in Recommendation



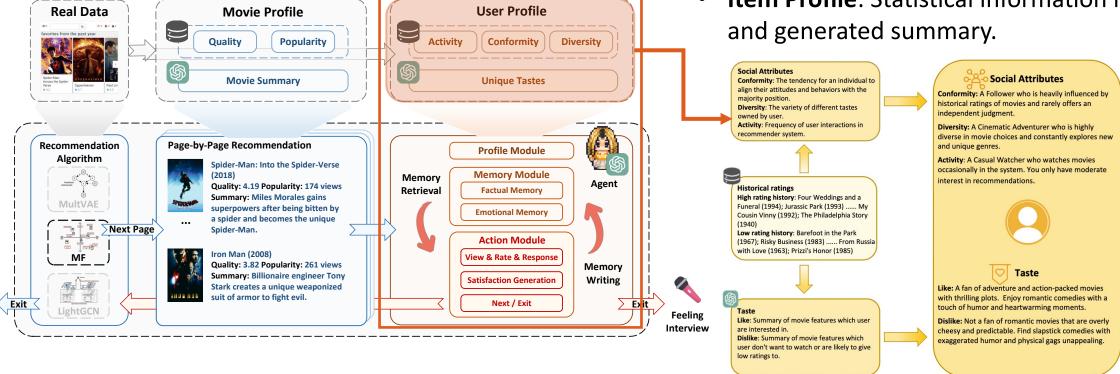
- LLM-powered Agents have potentials to solve long-standing problems in recommendation
 - Can an LLM-powered Agent faithfully simulate users?
 - Can an LLM-powered Agent be a better recommender with recommendation-specific knowledge?

Agents as Users

Agents as Users

Agent4Rec: Agent-driven user behavior simulation

- **Key Points:**
 - Can LLM-powered Agent generate faithful user behaviors?
- **User Profile: 1,000** LLM-empowered generative agents initialized with real data in various dataset and augmented by ChatGPT.
 - **Item Profile:** Statistical information in dataset



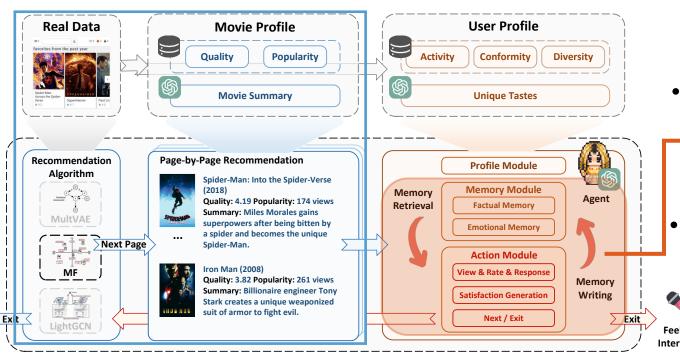
Agents as Users Agent4Rec

Agents as Users

☐ Agent4Rec: Agent-driven user behavior simulation

Key Points:

Can LLM-powered Agent generate faithful user behaviors?



- Agents as users: 1,000 LLM-empowered generative agents initialized from the real dataset.
- Memory and action modules enable agents to recall past interests and plan future actions (watch, rate, evaluate, exit, and interview).
 - Recommendation environment: Agent4Rec conducts personalized recommendations in a page-by-page manner and pre-implements various recommendation algorithms.

Agents as Users Agent4Rec

Key Observations:

- Agents are capable of preserving the user's social attributes and preference.
- Incorporating agents' rating as augmented data can enhance the recommender's performance.

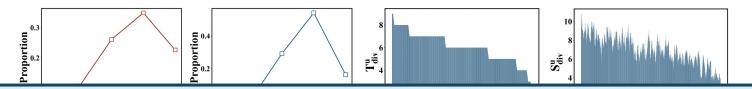


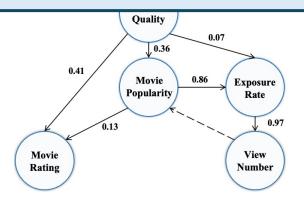
Table 3: Page-by-page recommendation enhancement results over various algorithms.

			Mult		LightGCN		
Offline	Recall NDCG		Recall	NDCG	Recall	NDCG	
Origin	0.1506	0.3561	0.1609	0.3512	0.1757	0.3937	
Vierrad	A 157A*	0.2604*	0 1612*	0.2540*	0.1765*	0.2042*	

LLM-powered agents are able to generate faithful behaviors.

able to discover Causal Relations among movie quality, movie rating, movie popularity, exposure rate, and view number.

 Offer a simulation platform to test and fine-tune recommender models.

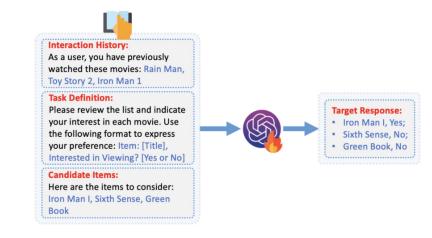


Agents as Users UGen

Agents as Users

Key Points:

- Can LLM-powered Agents generated behaviors benefit the recommender?
- Cooperating updated Agent4Rec framework with finetuning GPT-3.5-turbo as a warmup, agents can accurately select their interested items among candidate set.



- Agents have potentials to replace discriminative learning with generative learning paradigms for user modeling in recommendation.
- Conduct extensive experiments on three dataset from different domains (movie, book, game).

Agents as Users

Key Observations:

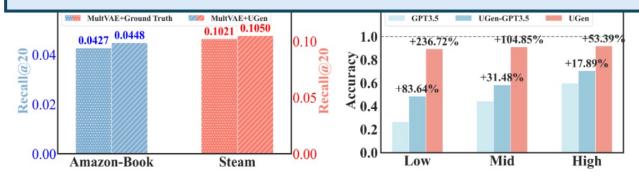
• Agents are capable of providing effective behaviors, especially in scenarios with sparse data.

Table 2: Faithfulness Evaluation of Agent's Behavior Alignment with Real User Preferences. Average ground-truth positives are 7.14 (MovieLens), 6.57 (Amazon-Book), and 5.80 (Steam). UGen shows significant improvement with p-value << 0.05.

		MovieLens				Amazon-Book				Steam			
	Acc	Pre	Rec	#Select	Acc	Pre	Rec	#Select	Acc	Pre	Rec	#Select	
GPT3.5	0.5295	0.4307	0.7369	11.63	0.4202	0.3855	0.9072	17.10	0.4350	0.3430	0.9164	16.59	
GPT4	0.6930	0.5743	0.6577	7.00	0.7947	0.6500	0.6003	5.16	0.7844	0.5103	0.7072	6.22	
RecAgent	0.6168	0.4519	0.8921	13.95	0.5411	0.3714	0.8150	14.65	0.4916	0.3485	0.9389	15.55	
RAH	0.5758	0.4096	0.6383	9.44	0.7253	0.3355	0.3950	7.45	0.6118	0.3874	0.6262	10.37	

	Movi	eLens	Amazo	n-Book	Steam		
	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20	
MF	0.1529	0.3186	0.0257	0.0480	0.0694	0.0567	
+ Random	0.1365	0.2913	0.0199	0.0225	0.0526	0.0432	
+ GPT3.5	0.1448	0.3089	0.0253	0.0330	0.0732	0.0608	
+ RecAgent	0.1400	0.2990	0.0254	0.0317	0.0696	0.0567	
+ RAH	0.1363	0.2917	0.0257	0.0370	0.0731	0.0604	
+ UGen	0.1667	0.3396	0.0413	0.0573	0.0807	0.0659	
Imp.% over MF	9.03%	6.59%	60.70%	19.38%	16.28%	16.23%	

Behaviors generated by LLM-powered agents can benefit recommenders.



(a) Augmented MultVAE

(b) Accuracy on Amazon-Book

						757
+ Random	0.1650	0.3358	0.0257	0.0354	0.0762	0.0604
+ GPT3.5	0.1693	0.3462	0.0408	0.0536	0.0817	0.0694
+ RecAgent	0.1650	0.3393	0.0386	0.0518	0.0802	0.0668
+ RAH	0.1597	0.3340	0.0391	0.0542	0.0867	0.0719
+ UGen	0.1899	0.3722	0.0555	0.0752	0.1140	0.0952
Imp.% over LightGCN	2.82%	2.59%	32.14%	12.24%	28.67%	25.76%

Table 4: Human Evaluation on Steam

	Random	Pop	MF	MF+Full	MF+Human
Average Rank	4.72	3.22	2.61	2.50	1.94

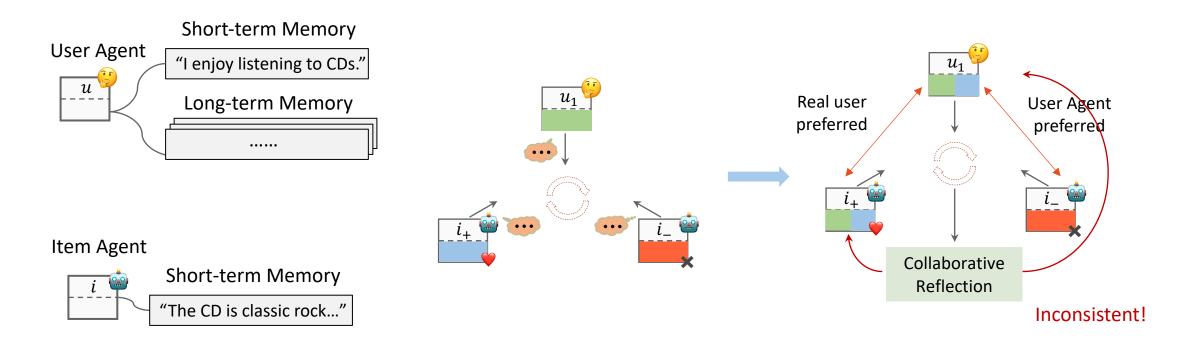
Agents as Users & Items AgentCF

Agents as Users & Items

☐ AgentCF: text-based collaborative learning

Key Points:

• Can LLM-powered Agent simulate collaborative signals/user-item interactions?



Agents as Users & Items

Agents as Users & Items

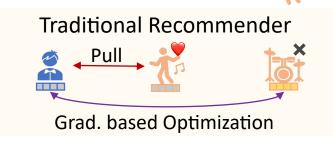
AgentCF: text-based collaborative learning

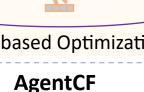
Key Points:

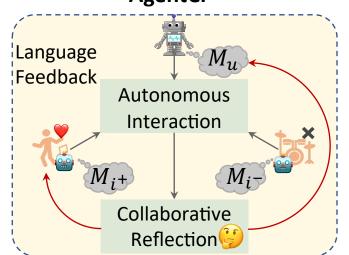
Can LLM-powered Agent simulate collaborative signals/user-item interactions?

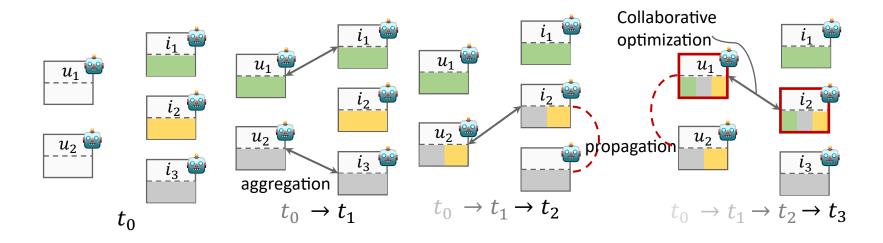
Real World:

Bought









Key idea: Parameter-free text-based collaborative optimization.

Agents as Users & Items

AgentCF

Key Observations:

Agents are capable of simulating user-item interactions.

Mathad	$\mathrm{CDs}_{\mathrm{sparse}}$		$\mathrm{CDs}_{\mathrm{dense}}$		$Office_{sparse}$			$Office_{dense}$				
Method	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10	N@1	N@5	N@10
BPR _{full} SASRec _{full}	0.1900 0.3300	0.4902 0.5680	0.5619 0.6381	0.3900 0.5800	0.6784 0.7618	0.7089 0.7925	0.1600 0.2500	0.3548 0.4106	0.4983 0.5467	0.5600 0.4700	0.7218 0.6226	0.7625 0.6959
$\mathrm{BPR}_{\mathrm{sample}}$ $\mathrm{SASRec}_{\mathrm{sample}}$	0.1300 0.1900	0.3597 0.3948	0.4907 <u>0.5308</u>	0.1300 0.1300	0.3485 0.3151	0.4812 0.4676	0.0100 0.0700	0.2709 0.2775	0.4118 0.4437	0.1200 0.3600	0.2705 0.5027	0.4576 0.6137

Agents can faithfully simulate user-item interactions.

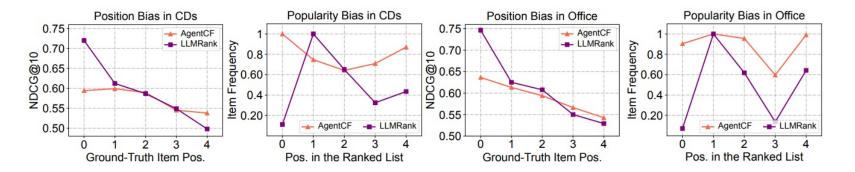
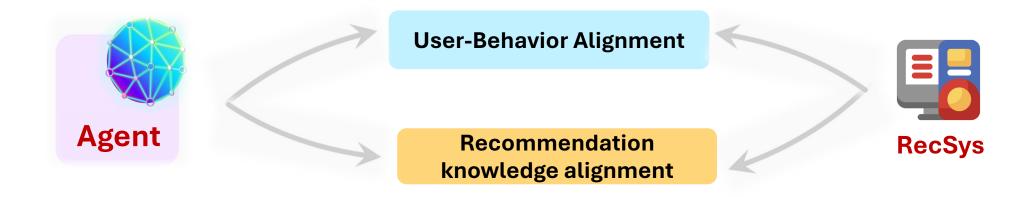


Figure 2: Analysis of whether our approach can simulate personalized agents to mitigate position bias and popularity bias.

LLM-powered Agents in Recommendation



- LLM-empowered have potentials to solve long-standing problems in recommendation
 - Can an LLM-powered Agent faithfully simulate users?
 - Agent4Rec, UGen, AgentCF, RecAgent
 - Can an LLM-powered Agent be a better recommender with recommendation-specific knowledge?

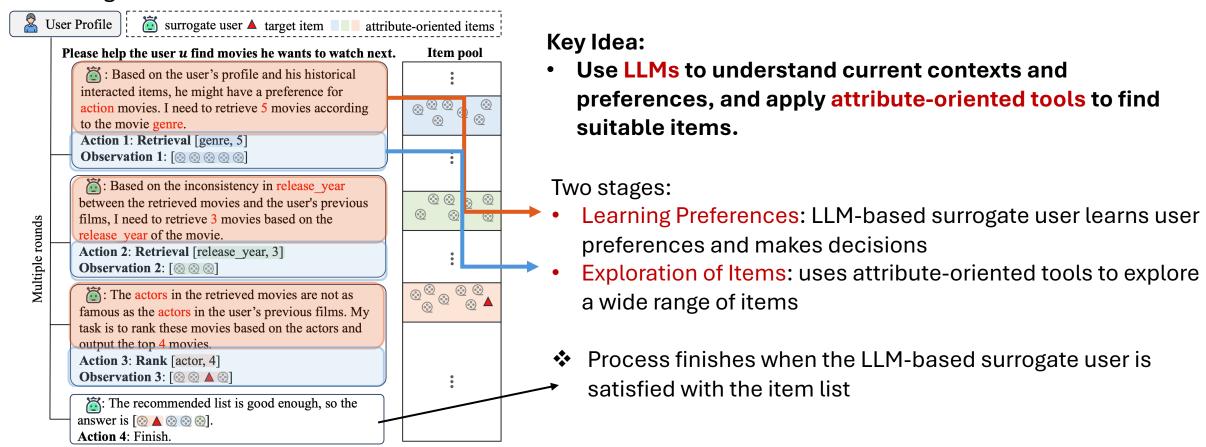
Agent as Recommender ToolRec

Agent as Recommender

☐ ToolRec: Tool-enhanced LLM-based recommender

Key Points:

Can Agents Utilize External Tools to Enhance Recommendations?



Yuyue Zhao et al. Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning. SIGIR 2024.

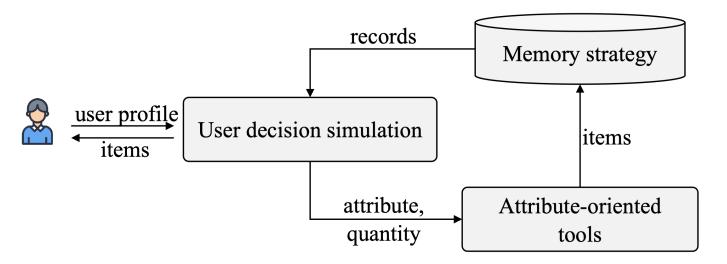
Agent as Recommender ToolRec

Agent as Recommender

☐ ToolRec: Tool-enhanced LLM-based recommender

Key Points:

Can Agents Utilize External Tools to Enhance Recommendations?



- LLMs as the central controller, simulating the user decision.
- Attribute-oriented Tools: rank tools & retrieval tools.
- Memory strategy can ensure the correctness of generated items and cataloging candidate items.

Agent as Recommender

ToolRec

Key Observations:

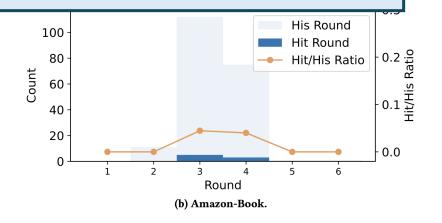
• Benefiting from rank tools and retrieval tools, ToolRec excels on the ML-1M and Amazon-Book datasets compared to baseline recommenders, demonstrating that it can better align with the users' intent.

	ML-1M	ML-1M Amazon-Book		125 - His Round
	Recall NDCG	Recall NDCG	Recall NDCG	100 - Hit Round - 0.4
SASRec	0.203 ± 0.047 0.1017 ± 0.016	0.047±0.015 0.0205±0.006	0.030±0.005 0.0165±0.006	Hit/His Ratio - 0.3
D D D T (D	^ 1=^ ^ ^ = ^ ^	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	^ ^ ^ ^ ^ ^ ^ ^ ^	0

Agents Utilizing External Tools can Enhance Recommendations.

ToolRec	0.215 ±0.044	0.1171 ±0.018	0.053 ±0.013	0.0259 ±0.005	0.028±0.003	0.0159±0.001
$ToolRec_B$	0.185 ± 0.018	0.0895 ± 0.002	0.043 ± 0.013	0.0223 ± 0.008	0.025 ± 0.005	0.0136 ± 0.009
Improvement	3.36%	15.10%	14.28%	5.14%	-29.16%	-27.32%

- ToolRec shows subpar performance on the Yelp2018 dataset local (niche) businesses.
- Most processes conclude in three or four rounds, indicating that the LLM can understand user preferences after a few iterations.



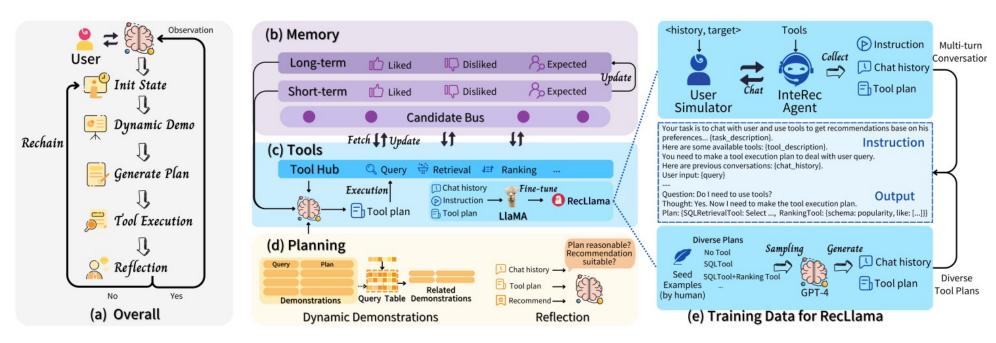
Agent as Recommender InteRecAgent

Agent as Recommender

☐ InteRecAgent: Interactive Recommender.

Key Points:

Agents can create a versatile and interactive recommender system.



• InteRecAgent enables traditional recommender systems, such as those ID-based matrix factorization models, to become interactive systems with a natural language interface.

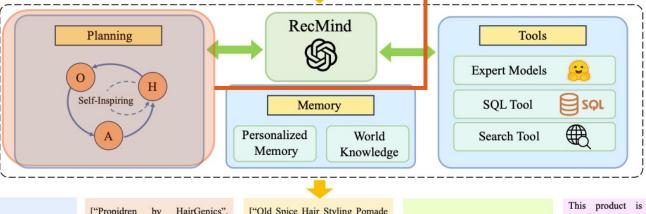
Agent as Recommender RecMind

Agent as Recommender

□ RecMind: Recommender agent with Self-Inspiring planning ability

Key Points:

Thought Question Can Agents with self-inspiring planning Enhance Recommendations? Action Observation **Rating Prediction** Direct Recommendation **Explanation Generation** Sequential Recommendation Review Summarization Write a review title to summarize user X has interacted with the the review from user X to item From the item candidates listed following items in chronological "Chrome Razor and Shaving How will user X rate the item below, choose the top 10 items to order: ["Old Spice Body Wash "Kusco-Murphy Tart Hair"? recommend to user X and rank Brush Stand". The review is "The Help user X to generate a 5-star Red Zone",] The rating should be an integer them in order of priority from stand is more solid then I expected explanation for item "FoliGrowth Please recommend the next item between 1 to 5, with 1 being highest to lowest. for the price. The shape of this Hair Growth Supplement". that the user might interact with. lowest and 5 being highest. Candidates: ["Rogaine Women stand allows me to hang the Choose the top 10 products to Hair Regrowth Treatment",] recommend in order of priority, I couldn't do that with stand I had from highest to lowest. gotten with the kit." 53 (b) Self-Inspiring RecMind Planning Tools



- Self-inspires:
- At each intermediate planning step, the agent "self-inspires" to consider all previously explored paths for the next planning, both generating alternative thoughts and backtracking.

5

["Propidren by HairGenics",
"Nutrafol Women's Balance Hair
Growth Supplements, Ages 45 and
Up",]

["Old Spice Hair Styling Pomade for Men", "Lume Whole Body Deodorant - Invisible Cream Stick - 72 Hour Odor Control",]

Great quality for good price.

This product is essential for growing and maintaining healthy hair! This is a product to be bought in bulk because you can never have enough of it.

Yancheng Wang et al. "RecMind: Large Language Model Powered Agent For Recommendation.NAACL 2024.

Agent as Recommendation Assistant

Agent as Rec Assistant

RAH: Reflection-enhanced user alignment for Rec assistant

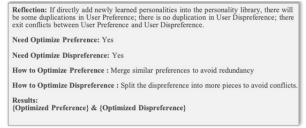
- **Key Points:**
 - Can Agents with Learn-Act-Critic loop comprehend a user's personality from their behaviors?

(a) Perceive Agent

Agent

Enriched

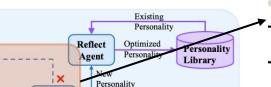
Features

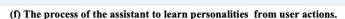


(e) Reflect Agent

Critic

Agent





Failure Reason

and Suggestion

Agent

Candidate

Personality

Analyze Why Like: The movie offers an engaging storyline featuring magic, adventure, and coming-of-age themes, which could appeal to Analyze Why Dislike: Some people might not like the movie if they are not fans of fantasy or magic-themed narratives. The movie's focus on a young protagonist and his friends might not be appealing to Learned Preference: | Fantasy and Adventure themes | Mysterious and engaging plot | Learned Dispreference: | Plot loophole |

Guess Like: The user may like the movie because it is a fantasy and adventure film based on a novel, with Guess Dislike: The user may dislike the movie if they are not a fan of the specific style of British films or if they X Critic: The predicted action is wrong Analysis: Based on the user's preferences for fantasy and

adventure themes, the user may like the movie. However, since the user may also dislike the movie because User Comment (Predicted): The fantasy and adventure

elements kept me engaged, while User Action: { Like, Dislike or Neutral } √ Critic: The predicted action is correct

Reasons: The possible reason is that the user's preference is too general and thus can not provide an strong evidence regarding to the item. And the dispreference can be

Suggestions: Learn from the user interaction again, extract more specific preferences, and

- Learn-Act-Critic Loop:
- Learn Agent collaborates with the Act and Critic Agents in an iterative process to grasp the user's personality.
- Upon receiving user feedback, Learn Agent extracts an initial personality as a candidate.
- Act Agent utilizes this candidate as input to <u>predict</u> the user's actual action.
 - The Critic Agent then <u>assesses</u> the accuracy. If incorrect, Learn Agent refines the candidate's personality.

(d) Critic Agent (b) Learn Agent (c) Act Agent

Assistant Action

on the Item

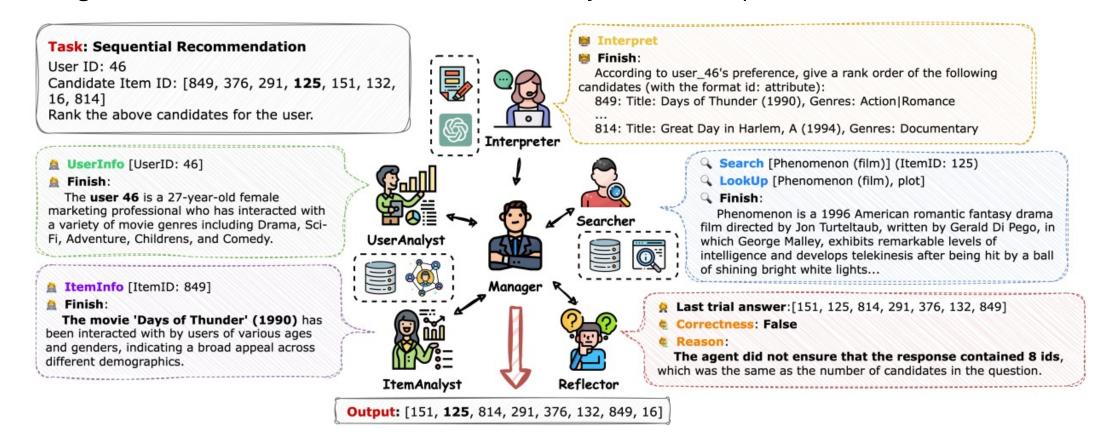
Multi-Agents as Recommender MACRec

Multi-Agent as Recommender

■ MACRec: enhance RecSys through multi-agent collaboration

Key Points:

Multi-agents with different roles work collaboratively to tackle a specific recommendation task.

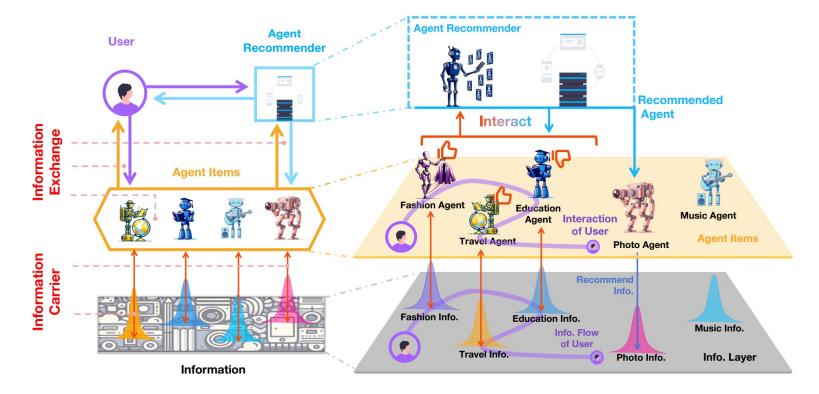


Agent Recommender for Agent Platform Rec4Agentverse

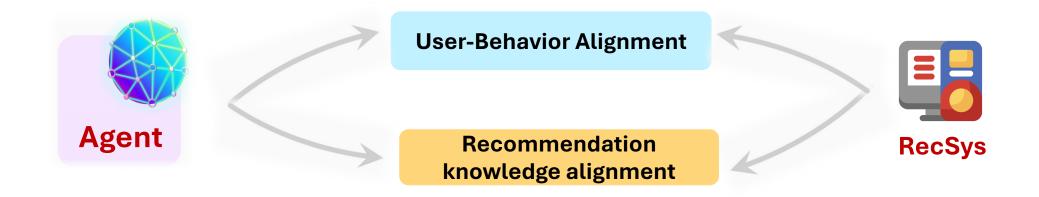
Agent Recommender

☐ Rec4Agentverse: Agent recommender for Agent platform

- Key Points:
 - Treating LLM-based Agents in Agent platform as items in the recommender system.
 - Agent Recommender is employed to recommend personalized Agent Items for each user.



LLM-powered Agents in Recommendation



- LLM-empowered have potentials to solve long-standing problems in recommendation
 - Can an LLM-powered Agent faithfully simulate users?
 - Agent4Rec, UGen, AgentCF, RecAgent
 - Can an LLM-powered Agent be a better recommender with recommendation-specific knowledge?
 - ToolRec, InteRecAgent, RecMind, RAH, MACRec, Rec4Agentverse

Thanks for listening!

Email: an_zhang@nus.edu.sg

An Zhang's Homepage

Resources